 |
advertisement |
|
|
|
|
|
|
Aerospace Instrument-Making Annotation << Back
Object Detection and Tracking System With
Optical Flow Correction |
Rastrepin D.E., Neusypin K.A., Khomutsky I.D.
An algorithm for neural network detection and tracking of objects in real time with correction by optical fl ow
is presented. The tracking task uses an extended Kalman fi lter with refi nement of the state vector by optical
fl ow calculated by the Gunnar Farnebak method. The algorithm is resistant to changes in lighting, time of
day and type of the sensor matrix. The results are confirmed by experimental data obtained when detecting
objects in the Black Sea using a mobile optical-electronic system developed by JSC Central Research Institute
CYCLONE.
Keywords: Deep learning, convolutional neural networks, optical flow, weighted average method, extended Kalman filter,
object detection and tracking.
DOI: 10.25791/aviakosmos.2.2025.1464
Pp. 56-64. |
|
|
|
Last news:
Выставки по автоматизации и электронике «ПТА-Урал 2018» и «Электроника-Урал 2018» состоятся в Екатеринбурге Открыта электронная регистрация на выставку Дефектоскопия / NDT St. Petersburg Открыта регистрация на 9-ю Международную научно-практическую конференцию «Строительство и ремонт скважин — 2018» ExpoElectronica и ElectronTechExpo 2018: рост площади экспозиции на 19% и новые формы контент-программы Тематика и состав экспозиции РЭП на выставке "ChipEXPO - 2018" |